
O . -l--~~~ *r'" - - ' - --- ' '

L~ Akr& %O-iN

4r4

IS-CM~ TQ - TE, P- DESANIWWV

V 4",

4 4 - A

M- 4st' aprvd-l

'K y -O 2r -"1

of P 4 ; r $~



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC, CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.



'1
'4 '-- ' -

'-4 '- .4

a 4 
-4 "4

A

4 4t, W"''~,,
4' 

-k

A 4'"''"'; y '

4' 2 K 4 ~  
-~

7 Deatxvt4 'th~ rep6~t MIW a' ~1V 4's
44p- 4 ~

4. ~
4
A-,, 4 4

'K ~. k~SXt~1X~A4i~ 4*tht ~z~%±a&tor. 1

4' 

4' -4

4' N 
U"C' 440

~4 *
4

t' - '0'

4 -~ '-''I'-'-.

C- 

k 
'~bt"%t,,,4 ,. S

.- ' 0' ~

4 

f>.4Z~%

4*'"- ~'So'

'4 "''~ I ~92-tw~%~ ~
4' 4'

'1 
44441* -;')~t~~' ~

-~ 
--

4' 4'- ~'

fl '444~~ 4 d"'4~O 9y"4'4'~ 44'

---- '4 '5 $4,' 4' '49~ 4 4
'4, 

~rr 

~.

'4" 0

* -. 4 ' 
~ "- "N-" %rsP. 

I. * 
"<41>A '

4 A ~4, -i>- - I
4'>s O'.~-

~ - 4'4 -'

4' V'~JC244 ~ 5' 1$

444

r. " -

-n)'Z-'4 '-' 4
4Li'~

- A 41'4''5 '4*''

'~ 

<4 at ~'v,;y

till 4,-''-' 
4

civ
't '

''- 
"~ '-' - - -

4 '41

' if -

itt .4' 9,

>' -4

I~Th~~-w'z,. 
'~ 1i

4
" 4'-s- I "

~DIM. 7, -
~1 ' 4 '5'

I A -~I i'I ~~ 
- 4' 4' ~ ~ -~ -

1' 
'-'4

IV 
- ' cIt

- *' - $ ~4<'4'-, j
'4''-'5 -~ 4-

44'- $

-

4'4 '-'44

~flp) 4W'J ~ be rfl%~fl+4tfl44t~ At - A

act? 14s4 ~~4t ~t-M( "4' -'44

-
'9%p4i~jQfl ~ 

-,49

t b$ &W~r
- -k '~ z' ~$~; 'oot~S ~ -

C

-~ 

- -
(4' 

4-'-'

-. ,t....~ 

4k
4,4

-3 

- -

<'C' -

0 

- 4'--~

- , . -. -' -'

- U



CENTER FOR THE APPLICATION OF MATHEMATICS

Lehigh University

Bethlehem, Pa.

Distortion of a finite amplitude standing wave in an

.;, elastic panel

by

M. P. Mortell

and

E. Varley

This document has been approved for public release and sale;
its distribution is unlimited.

Technical Report No. CAM-lD-6 August 1969

Department of Defense Contract No. DAADOS-69-C-0053



Distortion of a finite amplitude standing wave in

an elastic panel.

By M.P. Mortell and E. Varley

Center for the Application of Mathematics

Lehigh University, Bethlehem

Abstract:

The equations governing the stretching of a nonlinear

elastic panel of finite length are integrated in the limit

when the strains are small but the strain rates are comparable

with the natural frequency of the panel. It is shown that

such a theory must be used when investigating the distortion

and decay of a disturbance which is produced by impact and

reflection. The mathematical problem involves functions

whose values repeat at a sequence of times which are separated

by a time interval which depends on the current value of the

function.

In a future paper we show that resonant vibrations can

also be treated by this theory.

I ___________________



1. INTRODUCTION

Most of the results which have been obtained to describe

nonlinear effects in wavelike disturbances are valid in the

limit when the disturbance is generated by a single progressing

wave. These results are applicable when the transmitting

medium can be regarded as of semi-infinite extent so that the

effects of reflections from the boundaries, which excite

additional components of the disturbance, may be neglected.

In this and future reports we investigate a class of small

amplitude phenomena whose occurrence depends on the nonlinear

interaction, either in the body of the transmitting medium

or at its boundaries, between different components of a

disturbance.

Only those one dimensional disturbances which are

governed by systeris of totally hyperbolic equations which are

of the non-dispersive type are considered, so that the

equation of state of the transmitting medium is rate independent.

When only one component of a disturbance in such a system is

excited it is generated by the passage of a simple wave.

Moreover, according to classical linear theory any

disturbance can be thought of as generated by the passage of

nondistorting, nonattenuated simple (progressing) waves which,

in general, interact at the boundaries but not in the body

of the material. The mathematical problem consists of

determining the signals carried by these waves from prescribed

initial and boundary data. It usually reduces to solving

linear difference equations.

The small amplitude disturbances which we investigate

can roughly be divided into three classes. In class I are

those disturbances for which, to a first approximation, there

is no interaction or distortion of the component waves in

the body of the material but, nevertheless, for which nonlinear

effects are important P' the boundaries. That is, although

nonlinearity is of secondary importance when determining how

the component waves propagate it is of primary importance

when determining the signals they carry. An example of such
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a situation occurs when a column of gas in a Kundt tube

is driven at a resonant frequency (see Chester [1963]).

Class II disturbances are those for which even though

the components do not interact in the body of the medium,

nonlinearity (amplitude dispersion) is not only important

at the boundaries but also may distort the signal carried

by the component waves so that shocks may form and ultimately

dissipate the disturbance. Such phenomena are usually

associated with the cummulative effect of locally small

nonlinearity. A typical example of such a disturbance occurs

during the starting problem when an elastic panel,

initially at rest, which is rigidly bonded at one end is

deformed by a periodically applied traction at the other.

According to the theory of linear elasticity, which neglects

all dissipative mechanisms, the resulting motion at any

particle is the sum of an oscillation at the natural frequency

of the panel plus an oscillation at the frequency of the

applied traction. In practice, however, the standing wave

component is attenuated. In a future paper, we show that

if all dissipative mechanisms are neglected everywhere but

in shock layers, the disturbance which occurs is actually

of class II and that our theory for such disturbances does

agree with observation, even at resonance.

Finally, class III disturbances are those for which

one component is affected by its interaction with the other

components which do not themselves interact. An example of

this is the Melde phenomena (see Rayleigh [1945]). Therea

transverse vibration is controlled by its interaction with

a lower amplitude stretching wave. The frequency of the

transverse vibration is a subharmonic of that of the applied

tension. A perfectly analagous situation occurs in magneto-

hydrodynamics where the transverse magnetic field is controlled

by the acoustic wave. These disturbances are of obvious

importance in problems of control.

In this paper, as an example of a class II disturbance,

we describe the evolution of a small amplitude stretching

I#



-3-

disturbance in an elastic panel which has one plane boundary

rigidly bonded when the other parallel boundary, whose normal

motion generated the disturbance, is brought to rest. The

disturbance is described in terms of the variations in strain

and particle velocity in the panel at some reference time t=O

when the boundaries are at rest. Other motions which are

mathematically equivalent are that produced in an inviscid gas

when the tube in which the gas is in motion is closed at both

ends, and that produced in a vibrating string after both

ends are held fixed. According to classical linear theory,

if all dissipative mechanisms are neglected, the resulting

motion is oscillatory with a period determined by the ambient

sound speed a and width L of the transmitting medium. In
0

practice the motion is not exactly periodic and, because no

energy is being fed into the system at the boundaries,

dissipative mechanisms will ultimately attenuate the disturbance.

Which of the many possible dissipative mechanisms is mainly

responsible for the decay will depend upon the particular

system as well as upon the details of the disturbance at t=O.

In part I of this report we describe how nonlinearity (amplitude

dispersion) produces large strairn rates and ultimately shocks.

In part II we describe how these shocks attenuate the disturbance

and produce a uniformly strained panel.

When the disturbance in the panel is produced by an

impulsive motion of one boundary the initial disturbance can

be calculated. It is generated by the passage of a simple

wave (G.I. Taylor [1941]). In section 2 we use this disturbance

to show that if M denotes the ratio of the second to first

order elastic constants and if e(t,X) denotes the strain then,

the linear theory is valid only if the amplitude of the

disturbance is small in the sense that

IMe<<l (1.1)

and the strain rate is small in the sense that
e a

IM Y I << L (1.2)
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In the limit when (1.1) holds but when (1.2) need not the

* signal distorts and may generate shocks. In this small

amplitude finite rate limite is not, in general, obtained

as an explicit function of (X,t), as in the linear theory:

both e and t are given as explicit functions of X and some

parameter a, which is invariant at a characteristic wavelet.
Motivated by the representation of the solution in a simple

wave, in section 3 we derive a representation of the most

general disturbance in an elastic panel in the small amplitude
limit without restricting the level of the strain rate.

According to this representation the disturbance is produced

by the passage of two distorting simple waves which only

interact at boundaries.

In section 4 we show that the finite rate theory must

be uz:'d to discuss the evolution of the disturbance in an

elastic panel when its boundaries are held fixed. Nonlinear

Jdifference equations are obtained for the signals carried

by the compone.it waves. These are solved exactly and a

complete representation is obtained in terms of conditions

in the panel at t=0. As an application of the theory, the
deformation which results when a boundary is moved in an

arbitrary manner over a time less than 2ao/L, and then is
held at rest, is calculated in terms of the prescribed

boundary motion of the panel. In figures 4 and 5 we illustrate
how a disturbance which at t=O corresponds to a sinusoidal

variation in strain and zero particle velocity evolves to

form shocks. In part II we show how these shocks attenuate
the disturbance. We also generalize our results to disturbances

which are governed by general systems of hyperbolic equations.

2. LIMITATIONS OF LINEAR THEORY

We consider one-dimensional longitudinal disturbance

in an elastic material of finite reference length L. Let

x = x(X,t) (2.1)

be the position at time t, measured from one boundary X=O
of the material, of the material particle "X" which in some

reference state, when the material was at constant density po
and constant hydrostatic pressure po' was at a distance X

. . ... . . . . .. . . ..... " .. . .- %
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from X=O. Let T(X,t) be the traction measured from this

reference state. Then, the momentum equation for the material

relates T to the material velocity

u(X,t) = x, t (2.2)
by

T X = PoUt. (2.3)

For isentropic deformations of an elastic material

T = T(e) (2.4)

is a known function of the strain

e = x-l. (2.5)

In particular, for small strains we assume that

T = E[e.Me 2 +O(e3 )]. (2.6)

A special case of an elastic material is an inviscid

polytropic gas which, for isentropic flows, has an equation

of state

p p (1oo)Y (2.7)
0 P

where the density p is related to e by

p(l+e) = Po. (2.8)

According to (2.7) and (2.8), for an inviscid gas

T = Pop = ypo[e- 2 +O(e3 )], (2.9)

so that

:1E =yp 0 and M -Y+1 2 0*2(2.10)
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For algebraic convenience we choose L as the unit of

length and L/a o as the unit of time where

a° = o (2.11)
0 P0

is the sound speed in the reference state. We also take E
as the unit of stress and a as the unit of speed. With

this scaling, (2.3) reads

a 2(e)e,x = u,t (2.12)

where

22a = T'(e) = l+2Me+O(e 2 ). (2.13)

h! Equations (2.12) and (2.13) are supplemented by the continuity

equation

U = et (2.14)

which is obtained by eliminating x(X,t) from (2.2) and (2.5).

Riemann (see Stoker [1957]) showed that if

c(e) = a(s)ds= e{l+ ime+O(e2)}, (2.15)

then, in any isentropic wave motion governed by (2.12) and

(2.14), the combination of variables

1 u-c(e)] (2.16)

is invariant at each a-wavelet which propagates so that

DX a a(e), (2.17)

while the combination of variables

A
Si.
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g -- u+c(e)] (2.18)

is invariant at each O-wavelet which propagates so that

DX -a(e). (2.19)

if

f = F(t) at X = 0.

while (2.20)

g = G(t) at X = 1,

and if an a-wavelet is tagged by the time if left X=0, while

a 8-wavelet is tagged by th6 time i left X=l, then according

to (2.16), (2.18) and (2.20)

u = G(s)+F(a), and c = G(O)-F(a). (2.21)

Classical linear theory formally appro. mates a(e)

by unity in (2.17) and (2.19). Then, (2.21) imply that

u G(0 L)+F(aL), and c G(OL)-F(aL) (2.22)

.here F and G are functions of the forward, and backward

linear characteristic variables

_L =t-X, and 8 L t+(X-l). (2.23)

The statemernts (2.22) and (2.23) imply that, according to the

formal linear theory, the most general disturbance can be

regarded as the superposition of two components which do

not interact in the body of the material: a non-distorting,

non-attenuated, progressing wave moving to the right (the

a-wave), and a non-distorting progressing wave moving to the
left, (the a-wave). These components only interact at the

boundaries of the material and the mathematical problem
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reduces to determining the signal functions F and G from

prescribed boundary and initial data. This usually involves

solving linear difference equations.

Since

a(e) = l+Me+O(e 2 ), (2.24)

it might be thought that the linear theory provides a good
approximation in the small strain limit when

IMel<<l. (2.25)

Then, to a good approximation, the traction T(e) and c(e)

can be calculated from the strain according to the linear

laws

T = e, and c = e. (2.26)

However, as is well known, the small amplitude assumption

(2.25) is not, by itself, sufficient to justify the use of

linear theory to determine the variation in e(X,t): the

strain rates must also be "small". The most relevant

illustration of this limitation, which is important in

what follows, occurs in the signalling, or startingproblem.

Suppose that the elastic panel is rigidly bonded at X=l

while the other boundary X=O is at rest for all times

except in the interval.-e<t<O when it is moved in a prescribed

way. If no shocks form, the pulse which is generated at

X=O over this interval moves towards the boundary X=l as

a simple wave, (see G.I. Taylor [I't.]). For at any X,

G(O)=O for times t<ta (X)- the arrival time of the wavelet

0=l-e which left X=l at the arrival of the front of the

pulse. Then, according to (2.21)

u = F() and c -F(a), (2.27)

i i
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and (2.17) integrates to give

t = a+X/a(e) (2.28)

for the arrival time at X of the characteristic wavelet a

which left X=0 at t=a. The wave described by (2.27) and

(2.28) is amplitude dispersed: constant levels of u and c

are carried by characteristic wavelets each of which moves

with an invariant speed which is determined by the value of

c it carries. Linear theory predicts that in the simple

wave '.4
c = .-F(aL), = cL say1

where (2.29)

t aL+X. "

Conditions (2.27), (2.28) and (2.29), together with the

mean value theorem of differential calculus, imply that

- I = F -F(

- 'c -F''(e) , for some e
between "a and a

= D(c)XIF'(O)1, (2.30)

where

D(c) = 1-a(c) =M[l+0(c)]. (2.31)ac'"

Equations (2.25), (2.26), (2.30) and (2.31) imply that the

linear theory, which neglects amplitude dispersion, yields

a good approximation to conditions in a simple wave only if

the amplitude of the signal function is small in the sense

that

IMF(t)I<<l, (2.32)

Vl_
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and if the rate of change of the signal function is small

in the sense that

I t)l(2.33)

Condition (2.32) states that the amplitude of imposed strain

must be small compared with the magnitude of the ratio of
first to second order elastic constants, =y-- for a gas).
Condition (2.33) states that the amplitude oi the product of

travel time of the pulse front and the imposed strain rate
must also be small compared with the magnitude of the ratio

of first to second order elastic constants. Theories for
which the restriction (2.32) holds but the restriction (2.33)

does not are called small amplitude, finite rate theories.

Such theories were first used to solve significant. problems

in gasdynamics by Whitham (c5b. They have been generalized,

and used to solve problems governed by general systems of

hyperbolic equations by Varley and his co-workers (iq6s),
(1iqu,) and (i&'). Up to now these theories have only been

used to investigate disturbances which are generated by

progressing waves, as in the signaling problem. In this

report we show that such theories can be generalized to account

for effects due to reflected waves. As an application,
we show that such a theory is necessary when investigating the

*decay of a standing wave, or the "shut-off" problem in an

elastic panel. In future reports we will show that resonant

wave motions can also be analyzed by the theory.

For future reference, and to motivate the mathematical

approach wb use to generalize the theory, we briefly review

conditions in a small amplitude but finite rate simple wave.

To a first approximation, according to (2.26) and (2.27)

c = e = -u = -F(a) (2.34)

where the arrival time t=t(a,X) of the characteristic wavelet

________ ______
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a is given by (2.28), and (2.24), as

t-X = a+MF(a)X. (2.35)

Because the a-wave described by (2.34) and (2.35) is amplitude

dispersed, its profile distorts as it propagates. A measure

of this distortion is the incremental arrival time of the

a-wavelet at X,

p(a,X) = t, a I+MF'(a)X. (2.36)

At any a-wavelet, the ratio of the strain rate to input

strain rate

e,t/e*tlX=0  e,x/e,pxx = p-1. (2.37)

According to linear theory p-l and the level of the strain

rate in the material is always bounded by its value at input.

This theory gives a valid approximation when

X<IMF'(a) V'. (2.38)

By contrast the finite rate theory predicts that if IF'(a)j>jMj -

at some wavelet then, before the a-wave reaches X=l, p--O

at some (X,t) and the profile distorts so much that the strain

rate becomes unbounded compared with its level at input and

at least one weak shock forms. The main effect of such shocks

is to attenuate the disturbance. We will show in part II

that in an elastic material, where all.attenuating mechanisms

are neglected everywhere but in shock layers, it is this

shock attenuation which is actually responsible for the decay

of a standing wave.

if aShocks attenuate a simple wave because the characteristic

A wavelets, each of which carries a constant value of e and u,
coalesce into it. In fact, according to the elastic model,
if a shock is allowed to propagate into an "infinite region"



all wavelets except those carrying vanishingly small values

of u and e will coalesce into it, or some other shock, so

that ultimately the disturbance will be fully attenuated. The

4 equations governing conditions at a shock in an elastic

material are well known (see Varley lqiz1) . Because they are

needed in what follows, we briefly indicate how they are

derived. If t=W(X) denotes the arrival time of the shock

at X, if ct+(X) and cJ(X) are the characteristic wavelets

immediately ahead and behind the shock at X, then the usual

jump conditions at a weak shock imply that

Wt(X) = 1+ tM{F(a )+F(aJ)1 (2.39)

while the condition that a+ and a- are at the shock at the

same time, together with the statement (2.34), also imply

that

IV-X a +MF(a )X a &+1HF(a).(40

Once the input signal F(ca) is specified, equations (2.39)

and (2.40) govern the variations in W(X), a' MX and a((X)

at any shock. For the special case of a shock moving into

an undisturbed region, where F(c )_=0 for a <-e, these equations

'4 integrate to give

X - 2 V F(ca)dc, and t =X+c(+MF(cC)X
MF 2 (a

-e (2.41)

as the shock trajectory. According to.(2.41), only those
wavelets at which MF<0 can coalesce into this shock. If

ca=0 is the next zero of F(a) after ca=-e, then the amplitude

of the pulse generated at X=O over the time interval -e<t<0

is vanishingly small at distances which are large compared

with the attenuation length,
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Y, -2M F(s)ds, (2.42)

of the pulse. For, according to (2.41), as X/I the amplitude~a
of this pulse, and the shock,

-MF(c-)"( /X) 1 1 2 . (2.43)
a

Note that the decay in strength of the pulse as it propagates

is determined by Za which is a measure of the total energy

content of the input signal.

3. SMALL AMPLITUDE, FINITE RATE THEORY.

In this section we show that when both the signal functions

F and G are not identically zero, the linear approximation,

(2.22) and (2.23), is valid only when their amplitudes are

small in the sense that both

IMF(t)I<<l, and IMG(t)I<<l (3.1)

while their rates of change are small in the sense that both

IMFI(t)I<<l, and IMG'(t)l<<l. (3.2)

In (3.2) a dash denotes differentiation with respect to time

t, whose scale of measurement has been chosen so that the

travel time of a sonic front from boundary to boundary of the

material is unity. We integrate equations ('a-I( ) and (12I)

in the small amplitude finite rate limit when the restrictions

, (3.1) hold but when (3.2) need not. In contrast to the

linear theory, the finite rate theory predicts that amplitude

dispersion distorts, and that weak shocks attenuate the

disturbance. However, the two theories have one important

feature in common: the a-wave and 0-wave do not interact in

the body of the material. It is this one single feature which
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makes the standing wave problem, as well as that of

resonant motions, mathematically tractable. Even though,

in general, the problem of determining the signal functions

F and G from the prescribed initial and boundary data

involves solving nonlinear difference equations, it can

be solved for these problems to show that the assumptions

(3.2), inherent in the linear approximation, are invalid

and that the finite rate theory must be used.

Since the equations governing any disturbance are

linear, with known coefficients, if the hodograph variables

(f,g)) and (t,X),are used as independent, and dependent,,

variables, this choice of variables might seem the natural

one. However, the boundary value problem associated with

the class of disturbances considered here, which requires

that

when X = 0, t = F- 1 (f)I, while

wiewhen X = 1, t = 1 (g)

is a formidable free boundary value problem in terms of

these variables even when the signal functions F(t) and

G(t) are known. t The hodograph description also has two

other disadvantages. It is difficult to interpret any

physical approximation in terms of these variables. For

example, the disturbance generated by a simple wave, which

is characteristic of the disturbances studied here, cannot

be described in a straightforward way in the hodograph

formalism. The second disadvantage is that the use of the

hodograph technique is limited to disturbances which are

governed by a system of two first order hyperbolic equations.

The procedure used here, which can be extended to

general systems of hyperbolic equations, is to choose

variables which are optimal for the particular component

of the disturbance which is being investigated. These

variables are different for the a-wave component and

tLudford [1952] tackled this formidable problem. He used

the hodograph approach to calculate the time at which shocks form.
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6-wave component of the disturbance. This approach works

because, to a first approximation, these compcnents do not

interact in the body of the material.

3.1 The a-wave.

Motivated by the representation (2.34) and (2.35),

to describe conditions in the a-wave we use (a,X) as basic

independent variables. As basic dependent variables we

take the incremental arrival time

p(a,X) = (",X), (3.3)

and c(a,X). In terms of these variables

u = c+2F(a). (3.4)

Differentiating (2.17) with respect to a at constant X,

and considering a(c) as a function of c rather than e,

yields

+ a'(c) c, = 0. (3.5)

a (c)

Differentiating the last of equations (2.21) with respect to

a at constant 0 yields

Dc DX
- c, ~ - cx = -F'(a). (3.6)

Since

S+-1 DX
Dp+a - from (2.17),

Dt (3.7)" '[ =| a1 DX-a - from (2.19),

DX a

DXJ " y p. (3.8)
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If (3.8) and (3.6) are used to eliminate c, , condition (3.5)

yields

(-) p) = [a(c)] 2 a'(c)F'(a), (3.9)

which is regarded as an equation governing the variation of

p at each a-wavelet. The characteristic condition (3.9)

is supplemented by (3.6) which, using (3.8), reads

Dc =3.10
DaO a(c)pc,x = F'(a). (.0

Equations (3.9) and (3.10), which are two first order

equations for p(a,X) and c(a,X), are in a form which is

specially suited for investigating conditions in an a-wave

and, in particular, how it is affected by its interaction

with the a-wave. Suppose, for example, we wish to determine

conditions in the a-wave which is generated at X=0 for times

t>0. Conditions in this wave are, in theory, determined by

the values of F(a) and c(a,l) at values of a>0 together with

the value of c(0,X) for 0<X<l, (see fig. 1). We say that

the interaction of the a-wave with the a-wave can be neglected

if the trajectory of any wavelet a=a2 is determined by F(a)

for 0<a<a 1 and is independent of c(a,].) and c(0,X). There

is no such interaction in the small amplitude, finite rate

limit. For, without restricting F'(a), integrating (3.9)
from X=0 and using the mean value theorem of integral

calculus together with the restriction IMcl<<l to estimate

the error yields

p 1 I+MF'(a)X (3.11)

as a uniformly valid first approximation for the incremental

arrival time p=t, . Equation (3.9) and the mean value

theorem also implies that (3.11) can be formally integrated

to give

E ____________________
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t X+a+MF(a)X (3.12)

which is a uniformly valid implicit equation for the first

approximation to a(t,X). According to (3.12), just as in a

simple wave, the trajectory of any a-wavelet depends only

on the signal F(a) it carries.

To obtain higher order approximations for conditions

in the a-wave the iteration scheme
3

(/a--( pnp = [acn)1-2a'Ccn)F(a) (3.13)

and

cn+! ,a-la(cn)Pncn+l , - -F'(a), (3.14)

with

co = 0, and po = I+MF'(a)X (3.15)

may be used. Higher order approximations may also be

obtained as the limiting case as IMF(a)lj 0 of the regular

perturbation scheme in which the Riemann invariant

2r = c+F(a) = e[ro(a,X)+ rl(a,X)+O(e )] (3.16)

and

o(a,x)+cPl(a,X)+O( (3.17)

where -1

e max.Irl.

Since in a simple wave r-=O, (3.16) and (3.17) describe a

perturbed simple wave. Note that the perturbation is only

regular if r and p are regarded as functions of X and the

exact characteristic variable a.

I i .... .. ... ...... .. . ..... ......
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When an analysis similar to that described by equations

(3.5)-(3.12) Is applied to the $-component of the disturbance

using (0,X) as independent, and (t,c) as dependent, variables

a complete representation of conditions in any small amplitude,

finite rate disturbance is obtained. It is given bya u = G(a)+F(c) (3.18)

and

c = G(O)-F(a), (3.19)

where c(t,X) and 0(t,X) are given implicitly by

t-X =a+MP(a)X (3.20)

and

t+(X-1) : 8+MG(a)(X-1). (3.21)

If a(t,X) is computed from (3.20) then, in the limit

when MF(a)+0 but MF'(a) is unrestricted, F(c(t,X)) is a uniformly

valid first approximation for F as a function of (t,X). More-
a t at

over, to obtain the first approximation to -. and g, in this

limit, equation (3.20) may be formally differentiated to give

at
lim - lim l+MF(a) = I

MF+O MF+O
and

lim at = lim [I+MF'(a)X]
MF+O MF+O

= +MF'(ct)X.

To a s approximation, of course,

: I-Mc = l+M[F(a)-G(O)].

The linear theory formally approximates a and 8 in (3.20)

and (3.21) by the explicit expressions

aL = t-X (3.22)
and

t+(X-1) (3.23)

,L
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This is permissable if and only if conditions (3.1) and (3.2)

are satisfied.

4. DISTORTION OF A STANDING WAVE

In this section we use the representation (3.18)-(3.21)

to describe the disturbance in an elastic panel after its

boundaries X=0 and X=3J are brought to rest. This disturbance is

described for all t>0 in terms of the variations in O(X) and

(X), 0<X<I, the values of F and G in the panel at t=0. These

are related to u and c in the panel at t=0 by (3.18) and (3.19).

The nonlinear mixed initial and boundary value problem which

is solved here reduces to determining the signal functions F(a)

and G( ) from (3.20) and (3.21) in the region O<X<l for all

t>0 from the initial data that when t=0,

F = O(X) and G = (X), 0<X<l, (4.1)

and from the boundary data that on X=0 and X=l

u = G(O)+F(a) = 0, all t>0. (4.2)

For comparison, and to motivate the steps we take to solve

the nonlinear problem, we review the argument used to construct

the solution to the linear problem. Reference to fig. 2 will

be helpful.

4.1 Linear theory

Linear theory, according to (3.22) and (3.23), predicts

that in the region 0<X<l when t>0 the characteristic variables

(a, ) range from -1 to . To determine the signal functions

F(a) and G($) over this range, note that the condition that

(4.2) holds on X=0 when, by (3.23),

-= &>0, 0>-l (4.3)

implies that F and G are related by the condition -:hat

F(R)+G(R-l) = 0 when R>0. (4.4)

Similarly, the condition that (4.2) holds on X=l when, by

K (3.22),
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a 0-1 (4.S)

implies that

F(S-l)+G(S) 0 when S>0. (4.6)

If G is eliminated, by taking

R = S+1, (4.7)

(4.4) and (4.6) imply that

F(S+I) = F(S-l) when S>0, (4.8)

or, equivalently, that

F(a+2) = F(a) when ca>-l. (4.9)

Condition (4.9) states that F(a) is periodic with period

2 for all a>-l: if

F(a) = f(o) when -l<a<l (4.10)

then

F(a) = f(a-2m) when 2m-l<<2m+l, m=0,1,2,... (4.11)

Similarly, G(O) is periodic with period 2 for all >-l so

that if

G(O) = g(O) when -I<8<1 (4.12)

then

G(O) = g(O-2n) when 2n-l<0<2n+l, n=0,1,2,... (4.13)

---
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According to (3.18), (3.19), (3.22), (3.23), (4.11) and (4.13)
one representation of the solution, which as we will see is
the one most easily generalized to the nonlinear case, is that

u = g(s)+f(r), and c = g(s)-f(r), -l<s,r<l, (4.14)

where r(t,X) and s(t,X) are given explicitly by the conditions

that

t-(X+2m) = r when 2m-l<t-X<2m+l, ni=0,1,2,.. (4.15)

while

t+(X-1-2n) = s when 2n-l<t+(X-l)<2n+l, n=0,1,2,..

(4.16)

To determine f and g in terms of @ and p note that conditions
(4.15) and (4.16) imply that when t=0

m n = 0, and X = -r = s+l. (4.17)

Since,

f O(X) and g = (X) when t=0, (4.18)

f(r) 0(-r) when -l<r<O, (4.19)

and

g(s) = t(l+s) when -l<s<0. (4.20)

To determine f(r) over the range 0<r<l and g(s) over the
range O<s<l we use conditions (4.4) and (4.6). These yield

f(r) = -g(r-1) = -(r) when O<r<l, (4.21)
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and

g(s) = -f(s-l) =-P(1-s) when 0<s<l. (4.22)

In (4.17)-(4.22) we have assumed that the boundaries

X=0 and X=l are not suddenly brought to rest at t=0 so
that u is single valued and equal to'zero at (X,t) = (0,0)

and (X,t) = (1,0).

The statements (4.13)-(4.16) with f and g determined
from and P by (4.19)-(4.22) represents a complete solution,
according to linear theory, of the posed mixed initial and
boundary value.problem. Note that, according to (4.11) and
(4.13), the linear theory predicts that if the rates of
change of F(a) and G($) are small, in the sense (3.2), over
the range -l<s,O<l then they remain small in this sense for
all t. Now, even though the linear theory is consistent in

this sense, it is, nevertheless, wrong. As we show in what
follows, even if the rates of change of F(a) and G(O) over

the range -1<a,O<l are small in the sense (3.2), ultimately,

for sufficiently large time, conditions (3.2) are always
violated and the finite rate theory must be used.

4.2 Finite rate theory.

Conditions (3.20) and (3.21) imply that in the finite rate
theory the ranges of the characteristic variables (a,O) are
(see fig. 3)

<a<- and 1 (4.23)

where

Ie mean by this that the linear theory of elasticity

makes a prediction which is in disagreement with the non-

linear theory of elasticity,

_____ _______ __________
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Po = 2[1-MG(O)] and Q = 2[l+MF(O)1. (4.24)
0

To determine the signa3 functions F(a) and G(O) over this

range we use an argument which is similar to that used for

the linear theory. The condition that (4.2) holds on X=O

for all t = a>0 when, by (3.21),

= a-I+MG(O), a-l-MF(a) (4.25)

implies that

F(R)+G(R-=-MF(R)) = 0, all R>0. (4.26)

Similarly, the condition that (4.10) also holds on X=I for

all t = a>0 when, by (3.20),

a = 0-l-MF(a), 0--+MG(O) (4.27)

implies that

F(S-I+MG(S))+G(S) 0, all S>O. (4.28)

To obtain a single equation for F(a) in the range

11
1_-P we take

R = I+MF(R)+S, = I-MG(S)+S, S>0, R>.P (4.29)

in (4.26) to give

F(S+I-MG(S))+G(S) = 0, S>O. (4.30)

Conditions (4.28) and (4.30) state that if

a S- l-MG(S)], s>o , o (4.31)



; -24--

then

F(a)+G(S) = 0 (4.32)

and

F(a+2[l-MG(S)])+G(S) = 0, (4.33)

or, eliminating G, that

F(a+P(a)) = F() (4.34)

when

P(a) = 2[l+MF(a)], all a>-P. (4.35)

If, by a procedure similar to that outlined above, F is

eliminated, equations (4.26) and (4.28) yield the equations

G(+Q(a))= G(O) (4.36)

when

Q($) = 2[l-MG(8)], all P- 1,(4.37)

for the variation in G.

Equation (4.34), with P given in terms of F by (4.35),

is a nonlinear functional equation for F. It states that

even though F is not periodic with fixed period 2 it is in-

variant, or repeats, at a sequence of times which are

separated by an invariant time interval P=2(l+MF). In

particular, the zeros of F repeat at times which are separated

by a time interval 2. When F($) is continuous, the solution

to (4.34) can be expressed in terms of its variations over
11

the range lp < 3<Ip0 where, according to (4.24), (4.31),
(4.32) and (4.35)

Po = P(-Po) (4.39)
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If

F(a) = f(a) when -IPo<c<iP (4.40)

then the solution to (4.34) is given parametrically by

F(a) = f(r), -iPo<r< P0  (4.41)

where, when

(m-l1)Po<p<(m+l)Po, m=0,1,2,.. , (4.42)

r(a) is given implicitly by

a = r+2m(l+Mf(r)). (4.43)

To check that (4.40)-(4.43) does indeed represent the solution

of (4.34) and (4.35), let am and amm+l by the values of a in
the ranges (m- )P0<am<(m+ )P L," (m+l)Po<am+l_+(m+1 )Po which

are the images under the mapping defined by (4.42) and (4.43)

of the same parameter r so that, by (4.40),

F(am+,) F(am) = fr). (4.44)

Then, since

a = r+2m(l+Mf(r))
and m (4.45)a m+l r+2 (r+l) (l+Mf (r)),

am+ 1 -am = 2(l+Mf(r)) = P(a) = P(am+l) (4.46)

Equations (4.44) and (4.46) state that F is equal at two

values of a whose difference in P. This agrees with the

statements (4.34) and (4.35).

In contrast to tie linear theory, the solution represented

by (4.40)-(4.43) predicts that even though the level of
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jMIF(a) I is bounded by its level over the range 1lp <a<lPg~ O- -Z O'

the level of IMP (a) l is not bounded by its level over this

range. In fact, at some a=ac, which is an image under the

mapping (4.43) of some point r=r at which Mf'(r )<0,
[bmF'a dac) is unbounded. This implies that a shock forms at
X=0 at time t=acor somewhere else in the panel before time

t_.  (How the analysis must be modified once shocks form is

discussed in part I.) To see this note that, by (4.41)

and (4.43),

P(a) = f'(r) dr f'(r)[l+2mMf'(r)] " 1. (4.47)

~Equation (4.47) implies that IMF'(a) l first becomes unbounded,

compared with IMf'(r)I, at some time

t c = a c = rc+2mc(l+Mf(rc)), (4.48)

where m. is the least integer which satisfies the condition

that

-2Mf'(rc) = mc  (4.49)

for some r in the range -1 r Since, as we will show

when we determine f(r) in terms of conditions in the panel

at t=0,

g'Po) = f(Fo) , (4.50)

there is always some r which satisfies (4.49) for some mc >0.

The signal function G( ) can be determined from conditions

(4.36) and (4.37) by an argument similar to that used to

determine F(a). If

G() g(O) when 1_1 (4.51)

then
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1 1

G(0) = g(s) -1 s ^ (4.52)

where, when

(n-l)Qe<aO<(n+l)Qo , n=0,1,2,.., (4.53)

s($) is given implicitly by

= s+2n(l-Mg(s)) (4.54)

If the statements (4.41)-(4.43) and (4.52)-(4.54) are
used to determine F(a) and G(O), (3.18)-(3.21) can be used
to represent the disturbance in the panel in terms of f and
g. It is given by

u g(s)+f(r), and c = g(s)-f(r), (4.55)

where

-1 <r<1Po, and - 1 (4.56)

in the range

(M1 1 1P<tPoX<(m+ )P reO!!,2 (4S7)

r(t,X) is given implicitly by

t-(X+2m) = r+Mf(r)(X+2m); (4.58)

in the range

1 1 1(n- )Qo.:t+iQ CX-I)<(n+* )Q n=o011? (4.59)

s(t,X) is given implicitly by

t+(X-1-2n) = s+Mg(s)(X-l-2n). (4.60)
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4.3 Determination of f and g in terms of conditions in the

panel at t=O

If, when t=O,

f = (X) and g = V(X), O<X<l, (4.6].)

then f(r) is given parametrically by

'(-R) when r R[I+M (-R)], -I<R<O, - o.r<0
f(r) --

-p(R) when r = R[I-Mp(R)], O<R<l, O<r<__P 0

(4.62)

g(s) is given by

g(s) i (l+S) when s = S[I-MV(I+S)], -I<S<O, -Q 0<S<0;
= (S (4.63)

- (I-S) when s = S[I+M (I-S)], O<S<l, 1<s<_2Q

In (4.61)-(4.63) f and g are continuous because it is assumed

that the panel is not suddenly brought to rest at t=O so that

=(o)+ (o) 0, and t(l)+ (I) = 0. (4.64)

The results of linear theory, described in section (4.1), are

recovered by formally taking M=0 in (4.55)-(4.64).

The arguments used to establish the results (4.62) and

(4.63) parallel those already used in section (4.1) for the

linear theory, To obtain the first part of (4.62) first

note that, according to (4.57) and (4.58), when t=0 and 0<X<l

m = 0 and r = -X[l+Mf(r)]. (4.65)

However, by (4.61), when t=0

f(r) = (X), 0<X<I, (4.66)

which, together with (4.65), imply the first part of (4.62).

i
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Similarly, to obtain the first part of (4.63) note

that (4.59) and (4.60) imply that when t=O and O<X<l,

n = 0 and s = (X-l)[l-Mg(s)1. (4.67)

However, by (4.61), when t=0

g(s) = (X) (4.68)

which, together with (4.67), imply the first part of (4.63).

It remains to establish the second parts of (4.62) and

(4.63). To determine f(r) in the range 0<r<wP we use (4.26).

This relates f at any argument in this range to g(s) at a

negative argument where it Js given by the first part of

(4.63). In fact, according to (4.26)

f(r) : -g(s) (4.69)

when

r = s+l-Mg(s), O<r<P o o<s<O.

sl- -2 o' ls0 (4.70)

Equations (4.69) and (4.70) together with the representation

(4.63) for g(s) in the range -1o _S<0 yields the second part

of (4.62). Finally, to determine g(s) in the range 0<s<7 QO

we use (4.28) and the first part of (4.62).

The statements (4.55)-(4.60) with f(r) and g(s) given

by (4.62) and (4.63) provide a complete algebraic description

of conditions in any small amplitude finite rate disturbance

in terms of quite general conditions in the panel at t=O.

in section 6 we show that these statements are still valid

away from weak shocks whose influence is to attenuate the

disturbance.

4.4 Determination of f and g for the impact problem.

A problem of practical interest is the determination

Lit j
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of the motion produced in an elastic panel, or bar, which is

rigidly bonded at X=l after the other end, X=0, is suddenly

moved and then held fixed. The analagous problem in gas

dynamics is the determination of the flow in a gas filled

tube which is closed at one end when a piston is suddenly

moved and then brought to rest at the other. Before the

front of the disturbance reaches the boundary X=I, it is

4generated by the simple wave which was described in section

2. If the duration of the motion, E, of the boundary X=0

is short in the sense that

c<2, (4.71)

that is, if u0 at X=0 only over a time interval which is

less than that taken by a sound front to leave and return to

X=0 after reflection from X=I, the signal functions f(r)

and g(s) can readily be expressed in terms of the motion

of the boundary X=0.

If at X=0

u = U(t), (4.72)

where

U(-)= U(o) = 0 (4.73)

and where

U=O outside the range -c<t<O (4.74)

then, for -e<t<l-c

F(a) = U(a) and G( ) E 0 (4.75)

so, by (3.18)-(3.21), the disturbance is generated by a simple

K! wave. For t>-l (<l-e) the disturbance is described by (4.55)-

(4.60) with
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U(r), for <r<O
f(r) =2-'1 (4.76)

r U(0-2) when r = O+2MU(C-2), O<G<o, O<r<-Po,

where

1 1-P +MU(- .Po) = 1 and ao -P 2 ;  (4.77)

with

g(s) = -U(-r-1), when s = T+MU(r-1), -1<T<1, -1<s<l.

(4.78)

The statements (4.76)-(4.78) are readily established by using

arguments similar to those used in section (4.3).

-I
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S. DISCUSSION AND APPLICATIONS

In section 3 we pointed out that the linear approximation

to F as a function of (t,X) is valid only if IMF(t)i and iMF'(t)I
are small compared with unity. However, as for the standing

wave problem discussed in section 4, in most applications F

is not known a priori but must be calculated as a solution

to some difference equation. An obvious question which arises

is what are the restrictions which must be imposed on F which

allow the difference equation to be replaced by the difference

equation which is predicted by linear theory. There is no

reason to assume that they are the same as those which allow

F(:.) to be approximated by F(t-X): the restrictions will

depend on the particular problem being investigated. To

illustrate this point, we derive the conditions which allow

the solution to the nonlinear difference equation (4.34) and

(4.35), which is given by (4.41)-(4.43), to be approximated

by the solution to the linear difference equation (4.9).

For convenience we take Po=2, (this is always possible

by a suitable choice of reference configuration). Then, (4.40)

and (4.43) imply that

F(t) =f(r), -l<r<l, (5.1)

where r(t) is given by

t = r+2m(l+Mf(r)). (5.2)

The liDear theory predicts that

FL(t) = f(rL), (5.3)

where

r L = t-2m = r+2mMf(r). (5.4)

According to (5.1)-(5.4), and the mean value theorem of

______,_____.... ,- --~
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differential calculus,

FL(t) If(rL)-f(r)
1 , - 12mMf'(6) I, (5.5)- -- (r)'' "

for some 6 between r and r According to (5.5) only when

max.I2mMf'(0)j<<l (5.6)

does the solution FL(t) to the linear difference equation

approximate the solution F(t) to the nonlinear difference

equation. Since

MF'(t) = Mf'(r)/l+2mMf'(r), (5.7)

for all times at which (5.6) is satisfied the small rate

assumption IMF'(t)I<<l is also satisfied, so that F(a) can

be approximated by F(t-X). However, the converse is not

true. Even though IMF'(t)I<<l over some time interval the

restriction (5.6) need not hold: even though the distortion

of the signal carried by the a-wavelets may be neglected for

some time, (i.e. F(a) = F(t-X)), nevertheless, it does not

follow that amplitude dispersion (nonlinearity) may also be

neglected in calculating the signal carried. According to

(5.6) and (5.7) a restriction on MF'(t) which allows the

-olution of the nonlinear difference equation to be approximated

by the solution to the linear difference equation is that

MF'(t) <<. (5.8)

(2m)--MF'(t)

Chester [1963] has shown that small amplitude resonant

vibrations can also be investigated by a theory in which

amplitude dispersion can be neglected in the body of the

transmitting material but not in the calculation of the

signal which is carried, (which contains shocks!) In a

future paper we show, however, that the more general finite

rate theory must be used to investigate conditions in the
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resonant band and also to investigate the approach to resonance.

We have not shown that the solution to the nonlinear

difference equation (4.34) and (4.35) does, in fact, itself

approximate the solution to the exact equation satisfied by

F in the limit when MF 0. Presumably, this question could

be resolved by using the hodograph representation of the solution.

However, in partial support of our assumption that it does,

we note that there is an equation of state for which the difference

equation can be solved exactly so that the question can be

answered. This is the equation of state for which the co-

efficient of F'(a) in (3.9)

[a(c)]- 2a'(c) constant, = M say. (5.9)

By a suitable choice of E and M this equation of state can

be used to locally approximate many other equations of state

when investigating small amplitude phenomena which depend on

the magnitudes of both the local tangent and curvature of the

stress/strain curve. When (5.9) is used, equation (3.9)

integrates to give

(1- Ac){a(a)+MXF'(a)}, (5.10)

The function a(a) is determined as a function of F() from

the conditions that

on X = 0: t = a, u = 0 and c = -2F(a): (5.11)

it is given by

tThe equation of state (5.9) is an excellent approximation

to the actual stress/strain curves of a wide variety of "locking

materials" over the full range of strain. It is currently

being used by Cekirge and Varley to investigate large amplitude

waves in such materials.

• I'
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a [1+MF()] - . (5.12)

Similarly,

at =(1-1c){a($)+M(X-1)G'(O)} (5.13)

where T is determined as a function of G($) from the condition

that

on X = 1: t = f, u = 0 and c = 2G(O): (5.14)

it is given by

=[l-MG(B)] -'. (5.15)

If now (5.10) is integrated at X=1 and if the condition

that

on X = 1, c = 2G($) = -2F(a) (5.16)

is used we obtain the condition that

on X = 1, t = a+t +MF(a)[l+1F(a)] (5.17)

for some constant t-. Similarly, (5.13) and the conditions
that

on X = 0: c = -2F(a) = 2G(O) (5.18)

implies that

on X =0: t = O+t2 -MG($)[l+jMG(O)] (5.19)

when t2 is a constant. If now the three conditions (5.11),
(5.18) and (5.19) on X=O are used, together with the three
conditions (5.14), (5.16) and (5.17) on X=l, then, by using
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arguments which are similar to those used in section 4.2, a

nonlinear difference equation for F is obtained. Quite

remarkably, if the strain is measured so that t1+t2=2, the

exact equation for F is identical to that given for F by

(4.34) and (4.35). That is, equations (4.34) and (4.35),

4 ,which we hope are good approximations for any equation of

state in the limit when MF O, are exact for the equation of

state (5.9) for any level of MF.

5.1 Associated pure initial value problem

One prediction of linear theory is that the solution

to the mixed initial and homogeneous boundary value problem,

which is given in section 4.1, can also be derived as part

of the solution to a pure initial value problem in the

region --<X<-. The initial values of F and G for this

associated problem are periodic functions of X (all X) with

fixed period 2 and with

F = f(-X) for -l<X<l, (5.20)

and with

G = g(X-l) for O<X<2, (5.21)

where f and g are given by (4.62) and (4.63) with M=O. The

form of the dependence of f and g on u and c imply that the

initial values of u and c for this associated problem are

also periodic in X and, in addition, that u is odd, while c

is even, with respect to both points X=0 and X=l.

According to the representation (4.55)-(4.60) the

solution to the nonlinear mixed initial-boundary value

problem can also b. constructed from the solution to a non-

Flinear pure initial value problem. Moreover, the initial

values, 'I(X) and T(X), of F and G for the associated problem

are obtained from their prescribed values, p(X) and (X),

over the range O<X<l by the identical procedure used in

linear theory. For, (4.58) states that
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4 (X) = f (r), -. Po<r<7 Po, -o<X<_0 (5.22)

where r(X) is given by the condition that

X+2m r when -2m-l<X<1-2m, m =

(5.23)

According to (5.22) 4) is invariant, or repeats, at values of

X which are the images under the mapping (5.23) of the same

parameter r but different values of m. Any two neighboring

points of this sequence are at a fixed distance of 2 units

(twice the width of the panel) apart irrespective of the value

of r so that

$(X+2) = $(X). (5.24)

In a similar fashion, it can be shown that at any later

time F is still periodic in X with fixed period 2. It follows

that even though the solution to the associated initial

value problem is not periodic in time, as in the linear

theory, it is periodic in X.

5.2 Distortion of a normal mode.

Another representation of any solution to the linear

problem is as a sum of its noninteracting, nondistorting,

Fourier modes. For a nonlinear system, however, the separate

Fourier components into which any initial disturbance can

be decomposed do interact so that in the finite rate theory

this representation is invalid. In fact, even a pure initial

sinusoidal disturbance will distort in time, generating

higher harmonics, until shocks form . These ultimately

attenuate the disturbance. In part II of this report we

show that the ultimate equilibrium state of the material

is a state of rest in which the strain is uniform and is
given by

[
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e4 = e(t,X)dX. (5.25)
M f0

(eM is independent of time because the width of a panel

which is held fixed at both boundaries does not change.)

This final configuration, in which the shocks have smeared

out all spatial inhomogeneities, is an appropriate reference

configuration from which the strain and stored elastic energy

should be measured. With this convention

eM =0. (5.26)

This reference configuration is attained as the asymptotic

limit of a sequence of deformation for which, between shocks,

essentially

au _ eJu0 (5.27)

while

De auDt- - constant. (5.28)

Asymptotically, for "large" time, at any fixed time, the

profile of u against X is a series of N-waves and that of e

against X a series of square waves; at any fixed X, however,

the profile of u against t is a series of square waves and

that of e against t a series of N-waves.

In figures 4 and 5, as an illustration of the theory,

we show how the disturbance corresponding to the initial

conditions

u=O and Me = (sin X (5.29)
10pTsi r)(.9

(e is measured to have zero mean) develops. We graph the

variations of Mu and Me as functions of X at times which

correspond to 8 and 14 vibrations according to linear theory.

.3L_ _ _ _ _ _ .-- .-- -I.
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At these times linear theory predicts u and e are again

given by (5.29). Note how the profiles are approaching the

asymptotic profiles given by (5.27) and (5.18) and that

there is a tendency to equipartion energy between kinetic

and potential energy. This will be discussed in greater

detail in part II.
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FIGURE 3. Showing how a-wavelets~w 4hch carry constant

values of F (and reflected a-wavelets) coalesce to form a

shock.
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